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The Planck aether hypothesis assumes that space is densely filled with an equal 
number of locally interacting positive and negative Planck masses obeying an 
exactly nonrelativistic law of motion. The Planck masses can be described by a 
quantum mechanical two-component nonrelativistic operator field equation 
having the form of a two-component nonlinear Schr/Sdinger equation, with a 
spectrum of quasiparticles obeying Lorentz invariance as a dynamic symmetry- 
for energies small compared to the Planck energy. We show that quantum 
mechanics itself can be derived from the Newtonian mechanics of the Planck 
aether as an approximate solution of Boltzmann's equation for the locally 
interacting positive and negative Planck masses, and that the validity of the 
nonrelativistic Schr6dinger equation depends on Lorentz invariance as a dynamic 
symmetry. We also show how the many-body Schr6dinger wave function can be 
factorized into a product of quasiparticles of the Planck aether with separable 
quantum potentials. Finally, we present a possible explanation of wave function 
collapse as a kind of enhanced gravitational collapse in the presence of the 
negative Planck masses. 

1. I N T R O D U C T I O N  

The Planck aether hypothesis is the assumption that space is densely 

filled with an equal number  of positive and negative Planck masses, locally 

interacting with each other, but otherwise not the source of  any long-range 

field. It is furthermore assumed that the Planck masses obey a nonrelativist ic 

law of motion,  giving preference to the Galilei group as the more fundamental  

kinematic  symmetry of nature. This hypothesis is in l ine with Planck ' s  conjec- 
ture of 1899 that the only truly universal constants are h, G, and c, and that 

all other constants of physics should be reduced to them. 
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In the Planck aether model  the law of motion is specified to be a two- 
component nonrelativistic Heisenberg-type operator field equation (Win- 
terberg, 1988, t994) 

01~J-- - -  h 2 
- -  = - tb=_tbz)q~ - (1.1) ih Ot +2mp Vzds+- + 2 h c r ~ ( d ~ +  * -- 

where ~+ are field operators obeying the commutation relations 

[++(r),9~(r')] = 3(r - r ' )  

[++(r)O+(r')] = [O~(r)tb~(r')] = 0 (1.2) 

In (1.1), rp = (hG/c 3)112 and m p =  (hc/G) 1/2 are the Planck length and mass, 
respectively. In the Planck aether model each Planck mass occupies the 
volume rp 3. 

From the Planck aether model one can compute a spectrum of particles 
which together with their interactions greatly resemble the known spectrum 
of elementary particles. All these particles are quasiparticles of collective 
excitations of the Planck aether, and because wavelike disturbances are propa- 
gated in the Planck aether with the velocity of light, Lorentz invariance 
emerges as a derived dynamic symmetry for energies small compared to the 
Planck energy. It must be stressed that the Planck aether has little resemblance 
to the pre-Einstein aether models of the late 19th century, where the aether 
was a substance separate and in addition to ordinary matter. In the Planck 
aether model, the aether is rather the fundamental field, from which all 
elementary particles and their interactions would have to be derived, as in 
Heisenberg's nonlinear spinor theory. However, unlike Heisenberg's proposed 
fundamental field equation, which is invariant under the noncompact Lorentz 
group, the field equation of the Planck aether is invariant under the compact 
Galilei group. Accordingly, the kinds of divergences which occur in Heisen- 
berg's theory are absent from the Planck aether model. 

With the exception of the Planck-mass particles, all particles are quasi- 
particles, but only the quasiparticles obey Lorentz invariance as a dynamic 
symmetry. The Planck masses, in contrast, are subject to Galilei invariance. 
It would therefore be much more appealing if the Planck masses would be 
subject not only to a nonrelativistic law of motion, but to a classical Newtonian 
law of motion. Because the Planck aether has both positive and negative 
masses, such a description would require an extension of Newtonian mechan- 
ics to negative masses. Following Newton's conjecture that hard, frictionless 
spheres are the ultimate building blocks of matter, and by identifying Newton's 
frictionless spheres with the Planck masses, the Planck aether would be solely 
described by the kinetic energy of the Planck masses with all forces reduced 
to kinematic boundary conditions at the surface of the spheres. Newton's 
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system of frictionless spheres where the forces are replaced by kinematic 
boundary conditions at the surface of the spheres is probably the most perfect 
mechanical counterpart to Einstein's vacuum field equation of the gravita- 
tional field, where the forces are eliminated by the metric of a non-Euclidean 
space-time. 

We therefore ask whether, by identifying Newton's hard, frictionless 
spheres with the Planck masses, but permitting the existence of negative 
masses, we can derive quantum mechanics from the Planck aether hypothesis, 
as we have been able to derive special relativity from the same hypothesis. 
In support of this conjecture, we may note that the fundamental force which 
can be constructed from h, G, and c is 

Fp = c4/G (1.3) 

and does not contain h. If everything should be reduced to h, G, and c, then 
h should not enter the force governing Newton's hard, frictionless spheres. 

2. NEWTONIAN MECHANICS OF THE P L A N C K  AETHER 

Taking the Hartree approximation of (1.1), by replacing the field opera- 
tors with their expectation values, one obtains the Schr/Sdinger equation for 
a positive (or negative) Planck mass 

O ~  h 2 
i h - - =  ~ - -  V2++ + U(r)qJ+ (2.1) 

Ot 2mp 

in the average potential 

U(r) = 2hcr2(l+*+++ - + L b - I )  (2.2) 

generated by all Planck masses. Through its kinetic energy term the one- 
body Schr6dinger equation alone implies the replacement of the classical 
mechanical momentum by the operator p = (h/i) O/Oq, obeying the commuta- 
tion relation [pq] = h/i. For a field-theoretic treatment of the many-body 
problem, as in (1.1), it is thus sufficient to prove that the one-body Schr{Sdinger 
equation (2.1) can be derived from the Newtonian mechanics of the 
Planck aether. 

Within the Planck aether, a Planck mass is subject to collisions with 
both positive and negative Planck masses, whereby the average force exerted 
by all Planck masses on one Planck mass can be described by a potential. 
The collision between two negative Planck masses has the same outcome as 
the collision between two positive Planck masses, but the collision of two 
Planck masses of opposite sign leads to what SchrOdinger (1930, 1931) called 
a "Zitterbewegung" (quivering motion). This can be seen as follows: As is 
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true for the collision of Planck masses of equal sign, the collision of a 
positive with a negative Planck mass does not change the tangential velocity 
component. Only the normal component is changed, but the outcome is 
different. If v;  and v'_ are the normal velocity components before, v+ and v_ 
those after the collision, energy and momentum conservation imply that 

12 
v2+ - v ~  = v +  - v "~ 

- ' (2.3) I,'+ V _  ~--- V +  - -  V _  

Rewriting the first of (2.3) as (v+ - v_)(v§  + v_)  = (v'+ - v ' ) (v '+ + v ' )  
and dividing it by the second, one has 

' v'- v+ + v_ = v+ + (2.4) 

and hence 

t 
V+ ~ V +  

v_ = v'_ (2.5) 

It thus follows that the collision between a positive and a negative Planck 
mass does not change the velocity of the colliding Planck masses, neither in 
magnitude nor direction, but it permits a spatial parallel displacement of the 
trajectories. Expressed in terms of  Planck's fundamental units, this displace- 
ment should be equal to 

8 = (1/2)apt~ (2.6) 

where ap = Fp]mp = c4/Gmp = cT/2](hG) 1/2 and tp = rp/C. One thus finds that 

= + (1/2)(hGlc3)  1/2= +(l/2)rp = +_h/2mpC (2.7) 

which is just the radius of the Zitterbewegung derived by Schr0dinger from 
the Dirac equation with the Zitterbewegung velocity aptp = c. Whereas the 
fundamental force Fp = c4/G does not depend on h, the Zitterbewegung 
displacement certainly does. How this Zitterbewegung should be viewed is 
illustrated in Fig. 1. 

3. D E R I V A T I O N  O F  T H E  S C H R O D I N G E R  E Q U A T I O N  F R O M  
T H E  BOLTZMANN EQUATION 

To obtain the equation of  motion of  a single Planck mass immersed in 
the Planck aether one has to solve the Boltzmann equation. We use it in the 
form (Landau and Lifshitz, 1981) 
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V+ 

r 

r + _rp/2 

f'+(D = f+(r_ + r_p/2) 

V+ 

V'- 

r -- _rp/2 

7 
~ ~ -  _rp/2 

_r V_ 

f'_(s = f _ ( (  - rp/2) 

Fig.  1. " Z i t t e r b e w e g u n g "  d isp lacement  6 = -+rp/2 of  a posi t ive (negat ive)  Planck m a s s  
col l iding with a negat ive (posit ive) Planck mass .  

Of_+ v.  Of + a. Of = ( Vre,(f'f'~ --ff~) d~ dvl (3.1) 
ot Or ov ) 

where f is the distribution function of the colliding particles, f ' ,  f'~ before 
and f, fl after the collision, with f[ and fl the distribution functions of the 
particles which by colliding with those belonging to f '  and f change the 
distribution function from f '  to f. Furthermore, Vre~ is the magnitude of the 
relative collision velocity and ~ the collision cross section. The particle 
number density and average velocity are 

n(r, t) = I f(v, r, t) dv 

V(r, t) = f vf(v, r, t) dv/n(r, t) (3.2) 

The acceleration a is obtained from the force - V U  of the potential U(r). 
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The Boltzmann equation for the positive and negative masses of the 
Planck aether is 

Of+ _ 1 0 U  Of+ 4cwr~ i (f" f "  f+-fz) dv= (3.3) f -  + v + . - -  + = - 
Ot - Or mp Or Ov 

where we have set ~ = (2rp) 2 = 4r~ and Vrel = ew, with e~ a still to be 
determined dimensionless constant. With the Zitterbewegung equal to the 
velocity of light suggests that e~ = 1. 

According to (2.7) one has (see Fig. 1) 

f ' ( r )  = f+-(r _+ rv/2) (3.4) 

where one has to average over all possible displacements and Zitterbewegung 
velocities. The direction of the Zitterbewegung motion is in the opposite 
direction of the displacement rp/2. With (3.4) the integrand in the collision 
integral of (3.3) becomes 

f ' f "  - f+-fz = f•  r _+ fv- r -7- - f+( r ) fz ( r )  (3.5) 

Expandingf+-(r _+ rp/2) and f=( r  -7- rp/2) into a Taylor series 

( rp. Of+- rp 
f + - r  + = f . _ + - -  + 

- - 2 O r  8 0r 2 
_ _ _  + �9 . .  

( ~f) rp 'Of;+rZOZf;+ ' ' '  (3.6) 
/= rT-  = f z ~ - ~  Or 8 Or - - T  

one finds up to second order 

_ f+-f  +rp (fT- Of+_ Of= I 
- - Y  - f+- Or/  

r~ Of+ Of~ + r 2 {r Ozf• Ozf~) 
- -  I (  + - -  + f - -  Or: ] ( 3 . 7 )  4 Or Or 8 0r 2 

with higher order terms suppressed by the Planck length. With good approxi- 
mation one may set 

f~_(vz, r, t) -~ f+-(v+-, r, t) (3.8) 

whereby (3.7) becomes 
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f ' f "  - f• ~-- -~ \ 0r ] + 4 ~ - 0r e 

{rp)2 2 02 log f• 
= ~ - )  j+_ 0r 2 

( r l  02 l~  
-~ f •  Or 2 (3.9) 

To average the Zitterbewegung displacement over a sphere with the 
volume to surface ratio (rv/2)3/(rp/2) 2 = rp/2, one must apply to (3.9) the 
operator (1/2)rp" 0/0r, and to average over the Zitterbewegung velocity c 
(with c directed opposite to rp) one must apply in addition the operator c. 0/ 
0v• Then by integrating (3.3) over dv_v_, where one may set with sufficient 
accuracy f f= dv z  ~- 1/2r 3, which is the number density of one Planck mass 
species in the undisturbed Planck aether, one finds 

of• of§ 1 0 u  of• - - + u  + 
Ot - Or mp Or Ow_ 

02 (Ix ~ log f_+) 
4 0v+0r 0r 2 - ]  (3.10) 

To obtain an approximate solution of the Boltzmann equation (3.10) we 
compute its zeroth and first moments. The zeroth moment is obtained by 
integrating (3.10) over dr• with the result that 

On+ O(n•177 
- + = 0 ( 3 . 1 1 )  

Ot Or 

This is the continuity equation for the macroscopic quantities (3.2). The first 
moment is obtained by multiplying (3.10) with v• and integrating over dr• 
For the logarithmic term in (3.10) we approximately set 0 2 l og f •  2 ~- 0 2 
log n• 2. We thus find 

0(n• 0(n+V+.V• n+ OU ~cZr~ 0 { 0 2 log n_+.~ 
+ - + - - - -  + n+ (3.12) 

Ot Or m v ~ r  4 Or k - 0r  2 J 

With the help of (3.11) this can be written as 

- + V §  - = ~ - - - - -  + - -  n_+ ( 3 . 1 3 )  
Ot - Or mp Or 4m~ n= Or 0r 2 
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for which one can also write 

OV-~ + V §  OV+ = ~- 1 3 U + _ _  (3.14) 
Ot - Or mp Or 2m~ Or ~,~_+_ Or e J 

The equivalence of (3.14) with the Schr(Sdinger equation (2.1) for one 
Planck mass can now be established by Madelung's transformation: 

n_+ = +*+ 

ih 
n+V+ = ~ [~*V~+ - ~=V~*] (3.15) 

2rap 

by which (2.1) is transformed into 

On+ a(n=V+) 
- +  - - - 0  

Ot Or 

OV+ OV+ 1 0 
- + V + .  = u - -  [ U  + Q + ]  ( 3 . 1 6 )  

Ot - Or mp Or 

where 

h 2 1 32,,/~+_ 
Q-+ = ;2m~ _ _  ~_+ 0r z (3.17) 

The connection between (2.1) and (3.16) is given by 

t~+ = A+e is+_ -, A+ > 0, 0 -- < S+_ --< 2w 

h aS+ 
n+ = A  2, V+ = + - -  - (3,18) 

- - m p  Or  

where the uniqueness of t~+ requires that 

~ V +  �9 d r  = = 0 ,  1,  2 ( 3 . 1 9 )  + nh/mp, n O D 6  

Comparison of (3.16) with (3.14) shows complete equivalence for a = 
1, implying that Vrel = c. 

We now show that it is even possible to obtain an expression for the 
collision integral taking into account higher order terms, otherwise suppressed 
by the Planck length. As before, assuming that f z  - f ; - ,  one has 

log f + f =  = log _ r _+ + log r 
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= exp(_+~ . O )  [log f• + exp(W-~.~r ) [log f_+] 

[ + r  v 0 '~ 
= 2 cosh~_~-'~r ) [log f+] 

where �89 0/0r is an operator for which 

Hence 

(rp = (r . )  " 0n 
2 ar/  \ 2 /  Or" 

(3.20) 

1]) 
(3.24) 

/ rp a) } 
f ' f ~  - f+f~_ = exp 2 cosh~__~--~rr) [log f_+] - f2  (3.21) 

To obtain from (3.21) the approximation (3.9), we expand the hyperbolic 
function up to the second order and the exponential function up to first order: 

exp{-} - f ~  = e x p  logf~ + Or 2 j - f ~  

2 
[rp] ,2 a: log f+ 

"=-- k 2 ] J+- Or 2 (3.22) 

which is the same as (3.9). 
Inserting (3.21) into (3.3), putting o~ = 1, applying the averaging operator 

(rp/2)e oZ/ov+Or, and finally integrating over dv=, whereby f f~dv:~ ~- 
1/2r 2, we obtain 

Of+ Of+__ 1 0 U  Of+ 
- - + V + "  + 
Ot - Or mp Or Ov+ 

= -c2 0v+Or 02 (f+-[ exp{2c~189176 - 1 ] )  (3.23) 

Integrating (3.23) over dv+, we obtain as before the continuity equation 
(3.11). Multiplying (3.23) by v+ and integrating over dv+, and setting O z log 
f+/Or 2 ~ O 2 log n+/Or 2, we find 

0(n+V+) 0(n-W+ �9 V+) + 
Ot Or 

n+OU c 2 0 {  [exp{2cosh(+-}rp'(O/Or)[logn+_]} 
= + - - - - +  1l+_ 

mp Or Or n~ 
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which with (3.11) can be simplified: 

0V+ 0V+ 
- + V + "  - 

Ot - Or 

I OU c2 O { [exp{2cosh(+�89 
: ~ - - - - q - - - - -  n +  

mp Or n+ Or - n 2 
1]} 

(3.25) 

By applying the inverted Madelung transformation to (3.25), one can 
obtain higher order correction terms for the Schr6dinger equation. They 
contain nonlinear terms suppressed by the Planck length. 

4. THE SCHRODINGER EQUATION AS A CONSEQUENCE OF 
THE NEWTONIAN MECHANICS OF THE PLANCK 
AETHER 

The solution of the Boltzmann equation gave us the Schr6dinger equation 
for a Planck mass. This derivation suffices to set up equations (1.1) and (1.2) 
of the Planck aether model, but it does not prove the validity of the Schr6dinger 
equation for any mass m :~ mp. 

According to the Planck aether model, all finite-rest-mass particles, 
except the Planck masses themselves, are excitonic quasiparticles of the 
Planck aether. And because these quasiparticles are held together by forces 
transmitted through waves which in a rest frame of the Planck aether propagate 
with the velocity of light, they obey Lorentz invariance as a dynamic symme- 
try. In this dynamic interpretation of Lorentz invariance the forces holding 
together the quasiparticles are balanced by the fluctuations of the Planck 
aether, and it is for this reason that the fluctuations have to be Lorentz 
invariant as well. The only Lorentz-invariant frequency spectrum is 

f(co) dco = const-co3 dco (4.1) 

which in the dynamic interpretation of Lorentz invariance is valid for co < <  
cop, where cop = c/rp is the Planck frequency. Because the kinetic energy term 
-(h2/2m)V2tb in the Schr6dinger equation for a particle of mass m implies 
the replacement of the classical momentum mv by the operator (h/i) O/Or, 
the particle has the zero-point energy E0 = (1/2)hco, where co = c/h with k 
= h/mc. The zero-point energy E0 = (1/2)hco = mc2/h scales as the particle 
mass m, and it implies a Lorentz-invariant zero-point energy spectrum in 
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frequency space proportional to 

e(to) do  = const-(1/2)hto-4~ro) 2 doJ 

= const, to 3 deo (4.2) 

It follows that the SchrOdinger equation, which we had derived from the 
Boltzmann equation of the Planck aether for a Planck mass m = mp, remains 
valid for m v ~ mp, and we are led to the strange conclusion that it is Lorentz 
invariance as a dynamic symmetry which ensures the validity of the nonrela- 
tivistic Schr6dinger equation for masses different from the Planck mass. 
However, our analysis also suggests that the SchrOdinger equation becomes 
invalid for a mass m > >  mp, which should rather be described by Newtonian 
mechanics. If high-precision experiments could be carried out for masses 
m > mp, they might show a departure from quantum mechanics toward 
classical mechanics. 

The cause of the zero-point energy, which leads to the uncertainty 
relations, is the reason for the replacement of classical mechanics by quantum 
mechanics. The Planck aether hypothesis explains it through the coexistence 
of positive and negative masses in the Planck aether. Through them a positive- 
mass particle can for the time T -- h / ~ E  ~ h / m c  2 ~ ~ / c  (where ~ -- h / m c  

is the Zitterbewegung displacement) "borrow" energy from the negative-mass 
component of the Planck aether. According to the Planck aether hypothesis, 
quantum mechanics has for this reason its cause in the existence of nega- 
tive masses. 

5. MANY-BODY SCHRODINGER EQUATION 

A conceptually difficult problem of quantum mechanics is the interpreta- 
tion of the many-body Schr6dinger equation in configuration space, because 
it leads to the strange phenomenon of phase entanglement. The Planck aether 
hypothesis can avoid this problem because it views all particles as quasiparti- 
cles of the Planck aether. According to the Planck aether hypothesis, it is 
incorrect to visualize a many-body wave function to be composed of the 
same particles which are observed before an interaction between the particles 
is turned on. In the Planck aether hypothesis, where all particles are quasiparti- 
cles, the interaction rather leads to a new set of quasiparticles, the wave 
function of which can be factorized. This can be demonstrated for the wave 
function of two identical particles moving in a harmonic oscillator well. The 
well shall have its coordinate origin at x = 0, with the first particle having 
the coordinate Xl and the second one the coordinate x2. Considering two 
oscillator wave functions qJ0(x) and qJl(x), with ~0 having no and +l(x) having 
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one node, there are two two-particle wave functions: 

*(x~, x2) = +o(xO+l(X2) 

= ( 2 / ' r r ) l / 2 x  2 exp[- (x 2 + x~)/2] 

X2 

= ~ X l  

X2 
(5.1) 

+(x~, x:) = +,(x~)~o(X2)  

= (2/'rr)l/2xl exp[- (x~ + x2)/2] XI 

graphically displayed in the xl, x2 configuration space, with the nodes along 
the lines x2 = 0 and xt = 0. By a linear superposition of these wave functions 
we get a symmetric and an antisymmetric combination: 

A x 2  

~J~(Xl, x2) = (1 / . , / 2 ) [+o(xO~l (X2)  + t~l(XO~o(X2)] 

= (l/,f'~)(x2 + xt) exp[-(x~ + x~)/2] = [ ~ ~ ' ~  X1 

t~a(xl, x2) = (1/x/2)[t~o(Xl)t~l(X2) - ~l(Xl)O0(x2)] 

= (1/x/~)(x2 - xl) exp[-(x21 + x~)/2] 

(5.2) 

Xl 

If a perturbation is applied whereby the two particles slightly attract each 
other, the degeneracy for the two wave functions is removed, with the symmet- 
ric wave function leading to a lower energy eigenvalue. For a repulsive force 
between the particles the reverse is true. As regards the wave functions (5.1), 
one may still think of them in terms of two particles, because the wave 
functions can be factorized, with the quantum potential becoming a sum of 
two independent terms 
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h 2 V2(l.[i*ltli) 1/2 

2m (t~*~) '/2 

h 2 1 02(q/]gl~l) 1/2 h 2 l O2(I[I'~LIJ2) 1/2 

2m (t~t~t) 1/2 Ox~ 2m (+~qj2) 1/2 Ox 2 
(5.3) 

Such a decomposition into parts is not possible for the wave functions (5.2), 
and it is then no longer possible to think of the two particles which are 
placed into the well. This, however, is possible by making a 45 ~ rotation in 
configuration space. Putting 

y = x 2 + X  1 

x = x2 - xl (5.4) 

one obtains the factorized wave functions 

= ~ yd-(x2+v2)/2 ,l,s 

.~_ ~ xe-(X2+y2)12 ./g (5.5) 

for which the quantum potential separates into a sum of two independent 
terms, one depending only on x and the other one only on y. This means that 
the addition of a small perturbation in the form of an attraction or repulsion 
between the two particles transforms them into a new set of two quasiparticles 
different from the original particles. 

With the identification of all particles as quasiparticles of the Planck 
aether, the abstract notion of configuration space and inseparability into parts 
disappears, because any many-body system can, in principle, at each point 
always be expressed as a factorizable wave function of quasiparticles, where 
the quasiparticle configuration may change from point to point. This can be 
shown quite generally. For an N-body system, the potential energy can at 
each point of  configuration space be expanded into a Taylor series 

N 
U = ~,  a~,xkxt (5.6) 

k,l 

Together with the kinetic energy 

r = T x'~ (5.7) 
l 

one obtains the Hamilton function H = T + U and from there the many- 
body Schr6dinger equation. Introducing the variables , ~ x ~  = y~, one has 
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l 

N 

U = ~ bklykYl (5.8) 
k,l 

which by a principal axis transformation of U become 

1 

04 
u = 5 -  (5.9) 

Unlike the SchrOdinger equation for the potential (5.6), the potential (5.9) 
leads to a completely factorizable wave function, with a sum of quantum 
potentials each depending only on one quasiparticle coordinate. The transfor- 
mation from (5.8) to (5.9) is used in classical mechanics to obtain the normal 
modes for a system of coupled oscillators. The quasiparticles into which the 
many-body wave function can be factorized are then simply the quantized 
normal modes of the corresponding classical system. 

For the particular example of two particles placed in a harmonic oscillator 
well, the normal modes of the classical mechanical system are those where 
the particles either move in phase or out of phase by 180 ~ . In quantum 
mechanics, the first mode corresponds to the symmetric, the second one to 
the antisymmetric wave function. It is clear that the quasiparticles representing 
the symmetric and antisymmetric modes cannot be localized at the position 
of the particles placed into the well. 

6. WAVE FUNCTION COLLAPSE 

As von Neumann has shown, quantum mechanics consists of two quite 
different procedures: (1) a deterministic evolution of the wave function by 
SchrOdinger's equation, and (2) an indeterministic process whereby through 
a measurement the wave function "collapses" with superluminal speed into 
one of many alternatives, with the probability for one of the alternatives 
actually to occur expressed by the wave function prior to the measurement. 

In the Copenhagen interpretation, the wave function has no real physical 
meaning, being rather the expression of our knowledge. As our knowledge can 
change discontinuously following a measurement, so can the wave function. It 
is for this reason that the collapse of the wave function can occur with 
superluminal speed. Even though a measurement can always be carried out 
by an instrument, the Copenhagen interpretation ultimately requires the exis- 
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tence of conscious observers, introducing a highly subjective element into 
the description of nature. With few places in the physical universe having 
conscious observers present, the Copenhagen interpretation has not been 
accepted by all physicists. 

In a Newtonian interpretation of quantum mechanics, not only would 
the Schr6dinger equation have to be mechanistically derived, but superluminal 
wave function collapse as well. One may wonder if superluminal wave 
function collapse might not be in violation of special relativity, but there are 
two reasons why this is really not the case. First, as Ehrenfest (1927) has 
shown, a wave packet under the influence of an external force behaves like 
a particle in classical mechanics. Accordingly, as long as the center of mass 
of the wave packet does not assume superluminal velocities, there is no 
reason against an internal superluminal motion within the wave packet. But 
it is only this kind of superluminal motion which is required for wave function 
collapse. Second, because the Planck aether has all the characteristics of a 
medium, it can have wave modes with divergent phase velocities. As long 
as the superluminal collapse velocity does not transmit a signal, there can 
be no violation of special relativity. 

To show how superluminal wave function collapse may perhaps be 
understood as a mechanical effect of the Planck aether, we may choose the 
Hartree approximation, the simplest approximation of (1.1), whereby the field 
operators t~+ are replaced by their expectation values ++ = (0_*) and 6 "  = 
@~), yielding the nonlinear Schr/3dinger equation 

ih --OdP+ = +- h 2 

Ot 2rap 
V2qbz + 2hc~(do*d)+_ - r (6.1) 

By the Madelung transformation it becomes 

- + 17 = - 2 c 2 r 3 V ( n z  - n ; )  + - - V Q . o  
Ot rnp 

OH+ 
- + V . ( n + _ V •  = 0 

Ot 
(6.2) 

where 

/~2 V2 X/H+-- 
Q-+ - 2mp ~ (6.3) 
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is the quantum potential. For small-amplitude disturbances with wavelengths 
large compared to the Planck length, one can neglect the quantum potential, 
and obtains from (6.2) 

0 
(V+ + V_) = 0 

Ot 

a 
(V+ - V_) = -4c2r3V(n '+  - n'_) 

at 

On" 1 
- + - - V . V +  = 0  (6 .4)  

Ot 2r  3 - 

where n+_ = l l 2 r  3 + n+_: Eliminating n'_ from the second and third relations 
of (6.4), one obtains the wave equation 

0 2 
Ot-- 5 (V+ - V_) = 2c2~72(V+  - V _ )  (6.5) 

with the dispersion relation 

Ca) 2 = 2c2k z (6.6) 

For oscillatory disturbances the first relation of (6.4) implies that V_ = -V+ 
and hence n'_ = -n+ ,  whereby the total number density of the positive and 
negative Planck masses remains unchanged. Accordingly, the wave does not 
carry any energy and is "empty". 

Next we must consider the coupling of these disturbances with a particle 
described by the Schr6dinger wave function. We first consider the interaction 
with the Schr0dinger wave for a Planck mass. To be described by a SchrO- 
dinger equation,  it must be distinct from the Planck masses of the Planck 
aether. This is true for a Planck mass bound in a quantized vortex filament, 
with the diameter of the filament equal to a Planck length. Being bound in 
the vortex filament, the Planck mass executes zero-point oscillations deter- 
mined by the uncertainty principle. This zero-point energy is hC/rp and it 
generates a virtual phonon field surrounding the Planck mass with the strength 
of this field equal to the strength of the scalar Newtonian gravitational field 
of a Planck mass. Unlike the better Hart ree-Fock approximation, the Hartree 
approximation does not lead to quantized vortex solutions in the positive- 
negative-mass Planck aether, but the Hartree approximation has the phonon-  
roton spectrum of a superfluid, and a Planck mass bound in a roton would 
qualitatively behave like one bound in a vortex filament. Therefore, to make 
the analysis as simple as possible, we can use the Hartree approximation. 

Assuming that all Planck masses belonging to the disturbances n"  are 
bound in rotons, (6.2) gives the following set of small-amplitude equations, 
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with the Planck masses bound in rotons generating a scalar gravitational 
potential q~: 

OV+ 
Ot 2cZr3V(n% - n ' )  - V ~  

On" 1 
- + - - V . V + = 0  

Ot 2r~ - 

V2cb = 4~rGmp(n'+ - n'_) (6.7) 

where as before we have neglected the quantum potential. With Gm~ = hc, 
and the second relation of (6.7), one obtains for the gravitational potential 

V2 0 ~  = _ 2 w o z v . ( V +  _ V_) (6.8) 
Ot 

From (6.7) and (6.8) one then obtains 

0 2 
Ot-- 5 (V+ + V_) = 4wo2(V+ - V_) 

0 2 
Ot-- 7 (V+ - V_) = 2c2VZ(V+ - V_) (6.9) 

As before, the second relation of  (6.9) has wavelike disturbances obeying 
the dispersion relation (6.6), but it has in addition also the special solution 
V+ - V_ = A = const. Inserting this special solution into the first relation 
of (6.9), one obtains for (V+ + V_) a solution rising in time: 

(V+ + V_) = 2-tr@(V+ - V_)t 2 (6.10) 

For V_ = 0, with co 2 = 2Gn+mp = 2Gp, (6.10) becomes 

t = 1/(4~rGp) 1/2 (6.11) 

which is the gravitational collapse time for a mass of density p. If V_ --~ 
-V+, by which the second relation of (6.9) approaches the "empty" wave 
solution, one has t --4 0. The gravitational collapse time can for this reason 
be substantially shortened in the presence of negative masses if the negative 
mass flow is in a direction opposite to the flow of  the positive masses. 
Because the shortening of the collapse time occurs when the net average 
density approaches zero, as is the case for the "empty" wave, we suggest 
that this kind of gravitational collapse may serve as a model for wave func- 
tion collapse. 

Assuming that the ratio hto/htop of the kinetic energy of the Planck mass 
described by Schr6dinger's equation to the Planck energy is equal to (IV+ 12 
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- -  I V_ 12)/( I V+ 12 _{._ [ V_ 12), w e  can set near V_ = -V+, to/tOp ~- ( I V+ I + 
IV_ I)/[V+I, hence (V+ + V_)/(V+ - V_) = �89 We thus find for (6.10) 

t 2 _ tO 
4"rrto~ (6.12) 

Because the time for the collapse should beof  the order t - 1/tO, one finally has 

t ~-- (4~)-I/3rp/c (6.13) 

A wave packet of width r of a Planck mass described by Schr/Sdinger's 
equation would collapse with the superluminal speed 

Vc = r / t  ~ ( r / r v ) c  (6.14) 

In generalizing this result to a Schrtidinger equation describing a mass 
m < mp, we have to replace in (6.4) and (6.7) rp with r0 = h / m c ,  and find 
instead of (6.13) 

t = (4"rr)-l/3ro[c (6.15) 

with (6.5) remaining unchanged. For the collapse velocity we obtain instead 
of (6.14) 

vc ~ ( r / r o ) c  (6.16) 

For the collapse to proceed along the lines suggested by the model, the 
wavelike disturbances of the Planck aether must be in phase. With the Planck 
aether likely to be subject to large-scale fluctuations, possibly rising in propor- 
tion to r 1/3 as for a turbulent fluid, the mechanism for the collapse may not 
work above a certain length. If this should turn out to be true, then the 
quantum mechanical correlations are going to break down above this length. 

7. D I S C U S S I O N  

We have shown that the laws of quantum mechanics can be derived 
from Newtonian mechanics of the Planck aether. We have also shown that 
the Planck aether hypothesis removes the mystery of nonfactorizable many- 
body wave functions in configuration space, because in the Planck aether 
hypothesis all particles are quasiparticles of the Planck aether which through 
an interaction may continuously change into a new set of quasiparticles with 
factorizable wave functions. The remaining problem for a completely classical 
mechanical interpretation of quantum mechanics is the collapse of the wave 
function. The Copenhagen interpretation avoids addressing this problem, but 
at a very high price, by demanding the presence of conscious observers. The 
presence of negative masses in the Planck aether leads to a kind of gravita- 
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tional collapse which might explain the phenomenon of superluminal wave 
function collapse. 

Finally, we would like to compare our theory with past attempts to find 
a classical physics explanation of quantum mechanics. These attempts were 
pioneered by Bohm (1952), who showed how a simple model could explain 
the one-body Schrrdinger equation by assigning the SchrOdinger wave func- 
tion the property of a classical field guiding the particle along a trajectory 
disturbed by a Zitterbewegung of unknown origin. The next step was taken 
by Frnyes (1952) who postulated the existence of a Zitterbewegung of 
unknown origin given by the diffusion velocity 

vo = -~mm (7.1) 

He then showed that the Schr/3dinger equation can be derived from the 
variational principle 

f (  OS h 2 m ( h--~ Vn)Z~dr = } j (7.2) n h-~+~m(VS)2+ U+-~\Zm 

where n and S are given by (3.15) and (3.18). A different proposal made 
by Weizel (1953a,b, 1954) postulated as the cause for the Zitterbewegung 
hypothetical particles called "zerons". A somewhat different version of 
Weizel's idea was presented by Nelson (1966). All these proposals were 
criticized by Heisenberg (1963). Bohm's idea was criticized for failing to 
provide an understanding of the many-body Schrrdinger wave in configura- 
tion space. Frnyes was criticized for the lack of a physical interpretation of 
the statistical laws he proposed. Weizel's model, finally, was criticized because 
it seemed to be in violation of the second law of thermodynamics, with the 
zerons gaining in entropy in the course of the diffusion process. In the Planck 
aether hypothesis, where the diffusion is caused by negative-Planck-mass 
particles, and where in the course of the collisions the particles do not change 
their velocity, the entropy does not change. Furthermore, since in the Planck 
aether hypothesis all particles are quasiparticles of the Planck aether, with 
multiparticle configurations expressed in terms of factorizable quasiparticle 
wave functions, Heisenberg's other criticism raised against Bohm's proposal 
does not apply either. 

This brings us to the most difficult problem, superluminal wave function 
collapse. An interesting idea toward an explanation has been made by Penrose 
(1989), who gives strong reasons why wave function collapse might be related 
to gravitational collapse. However, it is difficult to see how gravitational 
collapse alone can explain wave function collapse in microphysics in the 
absence of any other mechanism. The one "graviton" criterion Penrose pro- 
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poses as a heuristic model remains unconvincing to this author. This problem 
does not arise in the Planck aether hypothesis,  where gravitational collapse 
is greatly enhanced through the existence o f  negative masses. 

In the Planck aether hypothesis the negative masses play the role o f  
"hidden parameters", hidden indeed, because it would require an energy 
comparable to the Planck energy of  -1019  GeV to make them directly 
observable. 
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